
POET OverviewPOET Overview

17.2.200517.2.2005
C. C. BrandoleseBrandolese, D.P., D.P. ScarpazzaScarpazza

17.2.2005 POET 2

OverviewOverview
Power Estimation

Assembly-level
User code, Libraries, Operating System calls

Source-level
Full applications

Power Optimization
Source level

Coding guidelines, optimization guidelines

Demo

17.2.2005 POET 3

Assembly level power estimationAssembly level power estimation
Constructive

Total energy obtained as sum of elementary
contributions related to either:

Assembly instructions
Functional units within the pipeline

Accurate, sufficiently fast

General
Abstract model of a CPU
Good accuracy of the estimates

17.2.2005 POET 4

Assembly level power estimationAssembly level power estimation
From the abstract CPU model

We derive estimates of the average current
absorbed per clock cycle by all instructions of
the specific instruction set

But...
E = Vdd·Iave·T = Vdd·Iave·Nck·Tck

Thus
Nominal execution times are inaccurate
Real execution time of instructions is essential

17.2.2005 POET 5

Behavioral simulationBehavioral simulation
To obtain real execution times

The behavior of CPU must be modeled
Pipeline(s)
Cache(s)

We ignore explicit contributions due to
Data dependecies
Inter-instruction effects

These effects are accounted for statistically

Output data used for source-level models

17.2.2005 POET 6

Behavioral simulationBehavioral simulation
Simulation toolchain

binary
trace atomic

language
model

architecture
model

binary dasm

bintrace object

symtrace symbolic
trace microcode

tribes

E, T, KIS

17.2.2005 POET 7

Library function characterizationLibrary function characterization
Third-party library functions

Often provided as binaries
No source code

Very used in building applications

They can be usefully pre-characterized
Using the assembly-level toolchain
Feeding them with significant data
Extracting statistical model

Models will be used at source-level

17.2.2005 POET 8

Library function characterizationLibrary function characterization
Library characterization toolchain

function
list db2stub

symbolic
stub

stubgen

data
models

bintrace

prototypes
Assembly Toolchain

spider

assembly
models

E, T
support

datadasm

C stub callgraph

statistics
library

catalog

17.2.2005 POET 9

OS function OS function characterizationcharacterization
Some library functions

Are wrappers around system calls

Assembly code executed in kernel mode
Is not accessible to our tracing tools
Is too complex to be simulated

We thus resorted to measurements
On prototyping boards
Writing suitable drivers and stubs
Statistically modeling the raw results

17.2.2005 POET 10

SourceSource--level power estimationlevel power estimation
Source code of an embedded application
can be seen as structured into

User code
Library function calls (models available)
Operating system calls (models available)

User code is mostly written in C
Estimates should refer to C-level
The approach should be independent from
the target platform

17.2.2005 POET 11

SourceSource--level power estimationlevel power estimation
Source code is parsed and decomposed

Parse tree made of nodes
Types and symbols tables

Nodes are annotated
Elementary cost placeholders called atoms

Atoms are translated
KIS instructions

The process is a pseudo-compilation

17.2.2005 POET 12

C model: ANSI grammarC model: ANSI grammar
for

= < ++ {}

i 0 i n i stmt stmtfor(i=0;i<n;i++){
f /= i;
g += fact(i);

} /=

f i

+=

g

+=

call

fact i

17.2.2005 POET 13

C model: Atom definitionC model: Atom definition
AtomForStatement
...
AtomForBody

...

AtomAssignAdd
...
AtomCall
...

for

= < ++ {}

i 0 stmt stmt

/=

i n i

f i

+=

g

+=

call

fact i

17.2.2005 POET 14

C model: KIS definitionC model: KIS definition
AtomForStatement
...
AtomForBody

...

AtomAssignAdd
...
AtomCall
...

1 cjt
...
1 cjn + 1 jump

...

1 alul
...
4 mvld + 1 call
...

17.2.2005 POET 15

C model: KIS costsC model: KIS costs
1 cjt
...
1 cjn + 1 jump

...

1 alul
...
4 mvld + 1 call
...

13.776
...
17.304 + 6.042

...

12.548
...
186.097 + 52.509
...

17.2.2005 POET 16

KIS costsKIS costs
KIS

Small set of assembly level instruction-classes
Used to model "atomic" operations
Fixed for all processors

Given a real instruction set
Each instruction is mapped to a KIS class

Costs of KIS classes
Suitable average over all real instructions that
have been mapped onto that class

17.2.2005 POET 17

ProfilingProfiling
The source code parse tree is used to

Find optimal instrumentation points
Rewrite an instrumented version of the
source code for profiling purposes

The output of profiling
Reports the counts for all nodes

Combining static data from KIS cost and
profiling counts gives dynamic estimates

17.2.2005 POET 18

SourceSource--level power estimationlevel power estimation
Estimation toolchain

probes
fake-gcc

sources pre

exec

stradivari

preprocessed
sources

type and
symbol
tables

democritos

atoms

parsetree

instrumented
sourcesbinary gcc, ld, as

KIS costs

counts E, Ttaylor

17.2.2005 POET 19

Estimation resultsEstimation results
Thanks to

The information in the parse tree
The unit costs of atoms

Cost are back-annotated to the source
Shown to the user at source-level

Per line
Per function
Per file
Overall

17.2.2005 POET 20

SourceSource--level optimizationlevel optimization
The first step for optimization is selecting

Critical functions
Critical code sections

Selection is based on energy threshold
Relative to the overall energy absorbed by
the application with the given set of data

Critical portions define the initial scopes

17.2.2005 POET 21

SourceSource--level optimizationlevel optimization
Interactive optimization is based on

A set of fuzzy rules
An inferential engine

Each rule has
A fitness function

Implemented as a stand-alone tool
Returning a value in the range [0;1]

A threshold
An optimization guideline

17.2.2005 POET 22

Inferential optimization engineInferential optimization engine
Each rule is applied on the initial scopes

If its fitness is greater than its threshold,
then we say that the rule has fired
A fired rule produces

A suggestion for optimization (not always)
A new output scope

Rules are reapplied until the set of scope
does not change any longer
This produces all optimization directives

17.2.2005 POET 23

Inferential optimization engineInferential optimization engine
Optimization toolchain

select

counts

jiminy

rules
E, T fitness

function
library

optimization
guidelines

critical
sections &
functions

type and
symbol
tables

parsetree

atoms

	POET Overview
	Overview
	Assembly level power estimation
	Assembly level power estimation
	Behavioral simulation
	Behavioral simulation
	Library function characterization
	Library function characterization
	OS function characterization
	Source-level power estimation
	Source-level power estimation
	C model: ANSI grammar
	C model: Atom definition
	C model: KIS definition
	C model: KIS costs
	KIS costs
	Profiling
	Source-level power estimation
	Estimation results
	Source-level optimization
	Source-level optimization
	Inferential optimization engine
	Inferential optimization engine

