POET

N

POET Overview

17.2.2005
C. Brandolese, D.P. Scarpazza

AN

| POET

T

Overview

®Power Estimation
OAssembly-level
OUser code, Libraries, Operating System calls
OSource-level
OFull applications

®Power Optimization

OSource level
OCoding guidelines, optimization guidelines

®Demo

D

17.2.2005 POET 2

AHQEP

D

Assembly level power estimation

@ Constructive

OTotal energy obtained as sum of elementary
contributions related to either:
OAssembly instructions
OFunctional units within the pipeline

OAccurate, sufficiently fast
®General

OAbstract model of a CPU
OGood accuracy of the estimates

D

17.2.2005 POET 3

U

Assembly level power estimation

® From the abstract CPU model

OWe derive estimates of the average current
absorbed per clock cycle by all instructions of
the specific instruction set

®But...
E = Vdd.Iave.T = Vdd'Iave.ch.Tck
®Thus

ONominal execution times are inaccurate
OReal execution time of instructions is essential i

A
4

17.2.2005 POET 4

| BOQET:

T

Behavioral simulation

@To obtain real execution times
OThe behavior of CPU must be modeled
OPipeline(s)
OCache(s)

OWe ignore explicit contributions due to
OData dependecies
OlInter-instruction effects

OThese effects are accounted for statistically
®Qutput data used for source-level models

o

17.2.2005 POET 5

U

Behavioral simulation

N
\J

@ Simulation toolchain

. language
‘bmary I—{ dasm] model

lbintracel ‘ object ‘ 8

A 4

: ——
binary symtrace symbolic atomic microcode
trace trace —

N
N—
—{ trlbes]
e
architecture
model E, T, KIS J\
U

17.2.2005 POET 6

<IVF’ETr
Library function characterization

®Third-party library functions

OOQOften provided as binaries
ONOo source code

OVery used in building applications

®They can be usefully pre-characterized
OUsing the assembly-level toolchain
OFeeding them with significant data
OExtracting statistical model

®Models will be used at source-level

o

17.2.2005 POET

AHQEP

D

A
4

prototypes

function I—-[db2stub]
list

Library function characterization
@ Library characterization toolchain

Assembly Toolchain

}

assembly
models

]

symbolic
stub
data l
models
o [stubgen] —'[dasm]—'
statistics

library

g—l C;;“b |——-[ca||graph]—>

support
data

4'[spi‘crler]
|

E T

17.2.2005 POET

!

8

| BOQET:
N

OS function characterization

®@Some library functions
OAre wrappers around system calls

®Assembly code executed in kernel mode
OIs not accessible to our tracing tools
OIs too complex to be simulated

®We thus resorted to measurements
OOn prototyping boards
OWriting suitable drivers and stubs
OStatistically modeling the raw results

o

17.2.2005 POET

Source-level power estimation

@®Source code of an embedded application
can be seen as structured into
OUser code
OLibrary function calls (models available)
OQOperating system calls (models available)

®User code is mostly written in C

OEstimates should refer to C-level

OThe approach should be independent from
the target platform

D

17.2.2005 POET 10

U

Source-level power estimation

®@Source code is parsed and decomposed
OParse tree made of nodes
OTypes and symbols tables
®@Nodes are annotated
OElementary cost placeholders called atoms
®Atoms are translated
OKIS instructions

®The process is a pseudo-compilation

D

17.2.2005 POET 11

POET
N

A
N

C model: ANSI grammar

for (1=0;i<n;i++) {
£ /= 1i;
g += fact(i);
}

17.2.2005

>

for_
S N S
] [o] [[o] [[stme] [stme
L] [of [ean

JD
12

POET

I POET
N

A
N

for_
S I N | X
] [o] [o] [[stme] [stme
L] [of [en
fact [i

17.2.2005 POET

C model: Atom definition

AtomForStatement

AtomForBody

AtomAssignAdd

AtomCall

D

13

d} POET
. € model: KIS definition

>

>

17.2.2005 POET

| POET

C model: KIS costs

A
\

17.2.2005 POET

| POET

T

KIS costs

@KIS
OSmall set of assembly level instruction-classes
OUsed to model "atomic" operations

OFixed for all processors

@®Given a real instruction set
OEach instruction is mapped to a KIS class

@ Costs of KIS classes

OSuitable average over all real instructions that
have been mapped onto that class l

17.2.2005 POET 16

I POQET
N

Profiling

®The source code parse tree is used to
OFind optimal instrumentation points

ORewrite an instrumented version of the
source code for profiling purposes

®The output of profiling
OReports the counts for all nodes

®Combining static data from KIS cost and
profiling counts gives dynamic estimates

D

17.2.2005 POET 17

POET
N

N
4

@ Estimation toolchain

I reprocessed
‘sources H, pre H P sI:)urces

Source-level power estimation

I—-[democritos}

I
I
: fake-gcc
I
I
I

probes

‘ bll‘lary chcl Id, aSH instrumented
sources

|<—[stradivari]4—

I exec I ‘KIS costs \
‘ counts I—{ taylor]—> E, T

17.2.2005 POET

18

I POQET

T

Estimation results

A
\J

®@Thanks to
OThe information in the parse tree
OThe unit costs of atoms

@ Cost are back-annotated to the source

®Shown to the user at source-level
OPer line
OPer function
OPer file
OOverall

17.2.2005 POET

19

D

| POET
N

Source-level optimization

A
\J

®The first step for optimization is selecting
OCiritical functions
OCiritical code sections

@ Selection is based on energy threshold

ORelative to the overall energy absorbed by
the application with the given set of data

@Critical portions define the initial scopes

D

17.2.2005 POET 20

| POET

T

Source-level optimization

®Interactive optimization is based on
OA set of fuzzy rules

OAnN inferential engine

®Each rule has

OA fitness function
OImplemented as a stand-alone tool
OReturning a value in the range [0;1]

OA threshold
OAnN optimization guideline

D

17.2.2005 POET

21

| BOQET:
N

Inferential optimization engine

@®Each rule is applied on the initial scopes

OIf its fitness is greater than its threshold,
then we say that the rule has fired

OA fired rule produces
OA suggestion for optimization (not always)
OA new output scope
®Rules are reapplied until the set of scope
does not change any longer

®This produces all optimization directives

!

17.2.2005 POET 22

POET

D

A
N

Inferential optimization engine

® Optimization toolchain

M

ET select critical
! _’u_' sections & rules
functions
type and
symbol
tables

‘ parsetree |—>
‘ atoms |—>
‘ counts |—>

17.2.2005 POET

jiminy

fitness
function
library

g

ﬁ

optimization
guidelines

D

	POET Overview
	Overview
	Assembly level power estimation
	Assembly level power estimation
	Behavioral simulation
	Behavioral simulation
	Library function characterization
	Library function characterization
	OS function characterization
	Source-level power estimation
	Source-level power estimation
	C model: ANSI grammar
	C model: Atom definition
	C model: KIS definition
	C model: KIS costs
	KIS costs
	Profiling
	Source-level power estimation
	Estimation results
	Source-level optimization
	Source-level optimization
	Inferential optimization engine
	Inferential optimization engine

